Entrainment and Mixing in Stratocumulus: Effects of a New Explicit Subgrid-Scale Scheme for Large-Eddy Simulations with Particle-Based Microphysics

Author:

Hoffmann Fabian1ORCID,Feingold Graham2

Affiliation:

1. Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/Earth System Research Laboratory/Chemical Sciences Division, Boulder, Colorado

2. NOAA/Earth System Research Laboratory/Chemical Sciences Division, Boulder, Colorado

Abstract

Abstract The entrainment and mixing of free-tropospheric air is an essential component of the observed microphysical structure of stratocumulus clouds. Since the relevant scales involved in this process are usually smaller than the grid spacing of typical large-eddy simulations (LESs), their correct representation is difficult. To adequately accommodate these small-scale processes, we apply a recently developed approach that explicitly simulates LES subgrid-scale (SGS) turbulence fluctuation of supersaturation using the one-dimensional linear eddy model. As a result of reduced numerical diffusion and the ability to explicitly represent the SGS distribution of liquid water and supersaturation, entrainment rates tend to be lower in the new approach compared to simulations without it. Furthermore, cloud holes comprising free-tropospheric air with negligible liquid water are shown to persist longer in the stratocumulus deck. Their mixing with the cloud is shown to be more sensitive to the microphysical composition of the cloud as a result of the explicitly resolved inhomogeneous mixing, which is also confirmed analytically. Moreover, inhomogeneous mixing is shown to decrease the droplet concentration and to increase droplet growth significantly, in contrast to previous studies. All in all, the simulations presented can be seen as a first step to bridge the gap between ultra-high-resolution direct numerical simulation and LES, allowing an appropriate representation of small-scale mixing processes, together with the large-scale dynamics of a stratocumulus system.

Funder

CIRES

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3