Quantification of QLCS Tornadogenesis, Associated Characteristics, and Environments across a Large Sample

Author:

Goodnight James S.1ORCID,Chehak Devin A.2,Trapp Robert J.1

Affiliation:

1. a Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

2. b National Weather Service, Midland, Texas

Abstract

Abstract The skillful anticipation of tornadoes produced by quasi-linear convective systems (QLCSs) is a well-known forecasting challenge. This study was motivated by the possibility that warning accuracy of QLCS tornadoes depends on the processes leading to tornadogenesis, namely, one that is dominated by an apparent release of horizontal shearing instability [shearing instability dominant (SID)] and one by a pre-tornadic mesocyclone [pre-tornadic mesocyclone dominant (PMD)] and its associated generative mechanisms. The manual classification of the genesis of 530 QLCS tornadoes as either SID or PMD was performed using heuristic, yet process-driven criteria based on single-Doppler radar (WSR-88D) data. This included 214, 213, and 103 tornadoes that occurred during 2019, 2017, and 2016, respectively. As a function of tornadogenesis process, 36% were classified as SID, and 60% were classified as PMD; the remaining 4% could not be classified. Approximately 30% of the SID cases were operationally warned prior to tornadogenesis, compared to 44% of the PMD cases. PMD tornadoes were also more common during the warm season and displayed a diurnal, midafternoon peak in frequency. Finally, SID cases were more likely to be associated with QLCS tornado outbreaks but tended to be slightly shorter lived. A complementary effort to investigate environmental characteristics of QLCS tornadogenesis revealed differences between SID and PMD cases. MLCAPE was relatively larger for warm-season SID cases, and 0–3-km SRH was relatively larger in warm-season PMD cases. Additionally, pre-tornadic frontogenesis was more prominent for cool-season SID cases, suggestive of a more significant role of the larger-scale meteorological forcing in vertical vorticity that fosters tornadogenesis through SID processes.

Funder

NOAA Research

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference56 articles.

1. Vulnerability due to nocturnal tornadoes;Ashley, W. S.,2008

2. A climatology of quasi-linear convective systems and their hazards in the United States;Ashley, W. S.,2019

3. Bow echo mesovortices. Part II: Their genesis;Atkins, N. T.,2009

4. Bentley, E. S., and J. R. Logsdon, 2016: An examination of the forecast process, mesoscale environment, and evolution of the northern Indiana/northwest Ohio derecho of 29 June 2012. Electron. J. Severe Storms Meteor., 11 (1), https://ejssm.org/archives/2016/vol-11-1-2016/.

5. Bluestein, H. B., 1993: Synoptic-Dynamic Meteorology in Midlatitudes. Volume II: Observations and Theory of Weather Systems. Oxford University Press, 596 pp.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3