Simulations of Severe Convective Systems Using 1- versus 3-km Grid Spacing

Author:

Weisman Morris L.1,Manning Kevin W.1,Sobash Ryan A.1,Schwartz Craig S.1

Affiliation:

1. a National Center for Atmospheric Research, Boulder, Colorado

Abstract

Abstract Herein, 14 severe quasi-linear convective systems (QLCS) covering a wide range of geographical locations and environmental conditions are simulated for both 1- and 3-km horizontal grid resolutions, to further clarify their comparative capabilities in representing convective system features associated with severe weather production. Emphasis is placed on validating the simulated reflectivity structures, cold pool strength, mesoscale vortex characteristics, and surface wind strength. As to the overall reflectivity characteristics, the basic leading-line trailing stratiform structure was often better defined at 1 versus 3 km, but both resolutions were capable of producing bow echo and line echo wave pattern type features. Cold pool characteristics for both the 1- and 3-km simulations were also well replicated for the differing environments, with the 1-km cold pools slightly colder and often a bit larger. Both resolutions captured the larger mesoscale vortices, such as line-end or bookend vortices, but smaller, leading-line mesoscale updraft vortices, that often promote QLCS tornadogenesis, were largely absent in the 3-km simulations. Finally, while maximum surface winds were only marginally well predicted for both resolutions, the simulations were able to reasonably differentiate the relative contributions of the cold pool versus mesoscale vortices. The present results suggest that while many QLCS characteristics can be reasonably represented at a grid scale of 3 km, some of the more detailed structures, such as overall reflectivity characteristics and the smaller leading-line mesoscale vortices would likely benefit from the finer 1-km grid spacing. Significance Statement High-resolution model forecasts using 3-km grid spacing have proven to offer significant forecast guidance enhancements for severe convective weather. However, it is unclear whether additional enhancements can be obtained by decreasing grid spacings further to 1 km. Herein, we compare forecasts of severe quasi-linear convective systems (QLCS) simulated using 1- versus 3-km grids to document the potential value added of such increases in grid resolutions. It is shown that some significant improvements can be obtained in the representation of many QLCS features, especially as regards reflectivity structure and in the development of small, leading-line mesoscale vortices that can contribute to both severe surface wind and tornado production.

Funder

NOAA Center for Earth System Sciences and Remote Sensing Technologies

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference59 articles.

1. The dependence of numerically simulated cyclic mesocyclogenesis to variations in model physical and computational parameters;Adlerman, E. J.,2002

2. A climatology of quasi-linear convective systems and their hazards in the United States;Ashley, W. S.,2019

3. Bow echo mesovortices. Part I: Processes that influence their damaging potential;Atkins, N. T.,2009

4. Vortex structure and evolution within bow echoes. Part I: Single-Doppler and damage analysis of the 29 June 1998 derecho;Atkins, N. T.,2004

5. Gravity currents and related phenomena;Benjamin, T. B.,1968

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3