Forecasting Lightning Threat Using Cloud-Resolving Model Simulations

Author:

McCaul Eugene W.1,Goodman Steven J.2,LaCasse Katherine M.3,Cecil Daniel J.3

Affiliation:

1. Universities Space Research Association, Huntsville, Alabama

2. NOAA/NESDIS/ORA, Camp Springs, Maryland

3. University of Alabama in Huntsville, Huntsville, Alabama

Abstract

Abstract Two new approaches are proposed and developed for making time- and space-dependent, quantitative short-term forecasts of lightning threats, and a blend of these approaches is devised that capitalizes on the strengths of each. The new methods are distinctive in that they are based entirely on the ice-phase hydrometeor fields generated by regional cloud-resolving numerical simulations, such as those produced by the Weather Research and Forecasting (WRF) model. These methods are justified by established observational evidence linking aspects of the precipitating ice hydrometeor fields to total flash rates. The methods are straightforward and easy to implement, and offer an effective near-term alternative to the incorporation of complex and costly cloud electrification schemes into numerical models. One method is based on upward fluxes of precipitating ice hydrometeors in the mixed-phase region at the −15°C level, while the second method is based on the vertically integrated amounts of ice hydrometeors in each model grid column. Each method can be calibrated by comparing domain-wide statistics of the peak values of simulated flash-rate proxy fields against domain-wide peak total lightning flash-rate density data from observations. Tests show that the first method is able to capture much of the temporal variability of the lightning threat, while the second method does a better job of depicting the areal coverage of the threat. The blended solution proposed in this work is designed to retain most of the temporal sensitivity of the first method, while adding the improved spatial coverage of the second. Simulations of selected diverse North Alabama cases show that the WRF can distinguish the general character of most convective events, and that the methods employed herein show promise as a means of generating quantitatively realistic fields of lightning threat. However, because the models tend to have more difficulty in predicting the instantaneous placement of storms, forecasts of the detailed location of the lightning threat based on single simulations can be in error. Although these model shortcomings presently limit the precision of lightning threat forecasts from individual runs of current generation models, the techniques proposed herein should continue to be applicable as newer and more accurate physically based model versions, physical parameterizations, initialization techniques, and ensembles of forecasts become available.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference34 articles.

1. The optical transient detector (OTD): Instrument characteristics and cross-sensor validation.;Boccippio;J. Atmos. Oceanic Technol.,2000

2. Development of an operational statistical scheme to predict the location and intensity of lightning.;Bothwell,2005

3. A physically based parameter for lightning prediction and its calibration in ensemble forecasts.;Bright,2004

4. Resolution requirements for the simulation of deep moist convection.;Bryan;Mon. Wea. Rev.,2003

5. Echo size and asymmetry: Impact on NEXRAD storm identification.;Buechler;J. Appl. Meteor.,1990

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3