Extraction of Factors Strongly Correlated with Lightning Activity Based on Remote Sensing Information

Author:

Zhang Haochen1,Deng Yeqiang1,Wang Yu1,Lan Lei1,Wen Xishan1,Fang Chaoying2,Xu Jun2

Affiliation:

1. School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China

2. State Grid Fujian Electric Power Research Institute, Fuzhou 350007, China

Abstract

Thunderstorms are a common natural phenomenon posing significant hazards to power systems, structures, and humans. With technological advancements, protection against lightning is gradually shifting from passive to active measures, which require the prediction of thunderstorm occurrences. Current research on lightning warning relies on various data sources, such as satellite data and atmospheric electric field data. However, these studies have placed greater emphasis on the process of warning implementation, overlooking the correlation between parameters used for lightning warning and lightning phenomena. This study relied on the ERA5 dataset and lightning location dataset from 117.5°E to 119.5°E longitude and 24.5°N to 25.5°N latitude during 2020–2021, utilizing Kriging interpolation to standardize the spatiotemporal precision of different parameters. After that, we conducted preliminary screening of the involved parameters based on the chi-squared test and utilized the Apriori algorithm to identify parameter intervals that were strongly associated with the occurrence of lightning. Subsequently, we extracted strong association rules oriented towards the occurrence of lightning and analyzed those rules with respect to lightning current amplitude, types, and ERA5 parameters. We found that thunderstorm phenomena are more likely to occur under specific ranges of temperature, humidity, and wind speed conditions, and we determined their parameter ranges. After that, we divided the target area into regions with different levels of lightning probability based on the strong association rules. By comparing the actual areas where lightning phenomena occurred with the areas at high risk of lightning based on ERA5 parameters, we validated the credibility of the obtained strong association rules.

Funder

Science and Technology Project of State Grid “Research on Disaster Warning and Risk Assessment Technology for Lightning Strike in Large Wind Farms”

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3