Morning-to-Afternoon Evolution of Marine Stratus Polluted by Underlying Ships: Implications for the Relative Lifetimes of Polluted and Unpolluted Clouds

Author:

Christensen Matthew W.1,Coakley James A.1,Tahnk William R.1

Affiliation:

1. College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Abstract

Abstract Ship tracks appearing in both the morning and afternoon Moderate Resolution Imaging Spectroradiometer (MODIS) imagery for the Pacific Ocean off the west coast of the United States were used to study the morning-to-afternoon evolution of marine stratus polluted by underlying ships and nearby uncontaminated stratus. Analyzed 925-hPa winds were used to predict the afternoon positions of ship tracks found in the morning imagery. Droplet effective radii, visible optical depths, and liquid water amounts were analyzed for morning and afternoon clouds that, based on the low-level winds, were taken to be the same clouds. As found in a previous study by Segrin et al., both morning and afternoon polluted clouds had smaller droplet radii, larger optical depths, and smaller liquid water amounts than the nearby unpolluted clouds. In contrast to the Segrin et al. study, however, the droplet effective radii decreased significantly from morning to afternoon in both the polluted and unpolluted clouds, with the rate of decrease being twice as large for the unpolluted clouds. The larger decrease in the unpolluted clouds is thought to be caused by drizzle, which is probably absent in the polluted clouds. The observations suggest that, with their slower rate of liquid loss, polluted clouds could have longer lifetimes than their unpolluted counterparts. Of interest is that clouds with similar droplet radii but smaller optical depths, and thus smaller droplet number concentrations and liquid water amounts, exhibited higher sensitivities to the effects of elevated particle concentrations and a greater likelihood of appearing in both the morning and afternoon satellite overpasses.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3