Opportunistic experiments to constrain aerosol effective radiative forcing

Author:

Christensen Matthew W.ORCID,Gettelman AndrewORCID,Cermak JanORCID,Dagan GuyORCID,Diamond MichaelORCID,Douglas AlysonORCID,Feingold GrahamORCID,Glassmeier FranziskaORCID,Goren TomORCID,Grosvenor Daniel P.ORCID,Gryspeerdt EdwardORCID,Kahn RalphORCID,Li ZhanqingORCID,Ma Po-LunORCID,Malavelle FlorentORCID,McCoy Isabel L.ORCID,McCoy Daniel T.ORCID,McFarquhar GregORCID,Mülmenstädt JohannesORCID,Pal SandipORCID,Possner AnnaORCID,Povey Adam,Quaas JohannesORCID,Rosenfeld Daniel,Schmidt Anja,Schrödner Roland,Sorooshian ArminORCID,Stier PhilipORCID,Toll VelleORCID,Watson-Parris DuncanORCID,Wood RobertORCID,Yang MingxiORCID,Yuan TianleORCID

Abstract

Abstract. Aerosol–cloud interactions (ACIs) are considered to be the most uncertain driver of present-day radiative forcing due to human activities. The nonlinearity of cloud-state changes to aerosol perturbations make it challenging to attribute causality in observed relationships of aerosol radiative forcing. Using correlations to infer causality can be challenging when meteorological variability also drives both aerosol and cloud changes independently. Natural and anthropogenic aerosol perturbations from well-defined sources provide “opportunistic experiments” (also known as natural experiments) to investigate ACI in cases where causality may be more confidently inferred. These perturbations cover a wide range of locations and spatiotemporal scales, including point sources such as volcanic eruptions or industrial sources, plumes from biomass burning or forest fires, and tracks from individual ships or shipping corridors. We review the different experimental conditions and conduct a synthesis of the available satellite datasets and field campaigns to place these opportunistic experiments on a common footing, facilitating new insights and a clearer understanding of key uncertainties in aerosol radiative forcing. Cloud albedo perturbations are strongly sensitive to background meteorological conditions. Strong liquid water path increases due to aerosol perturbations are largely ruled out by averaging across experiments. Opportunistic experiments have significantly improved process-level understanding of ACI, but it remains unclear how reliably the relationships found can be scaled to the global level, thus demonstrating a need for deeper investigation in order to improve assessments of aerosol radiative forcing and climate change.

Funder

Battelle

H2020 European Research Council

Natural Environment Research Council

National Oceanic and Atmospheric Administration

Earth Sciences Division

National Science Foundation

Bundesministerium für Bildung und Forschung

Israel Science Foundation

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3