Internal Tides and Mixing in a Submarine Canyon with Time-Varying Stratification

Author:

Zhao Zhongxiang1,Alford Matthew H.2,Lien Ren-Chieh2,Gregg Michael C.2,Carter Glenn S.3

Affiliation:

1. Applied Physics Laboratory, University of Washington, Seattle, Washington

2. Applied Physics Laboratory and School of Oceanography, University of Washington, Seattle, Washington

3. Department of Oceanography, University of Hawaii at Manoa, Honolulu, Hawaii

Abstract

Abstract The time variability of the energetics and turbulent dissipation of internal tides in the upper Monterey Submarine Canyon (MSC) is examined with three moored profilers and five ADCP moorings spanning February–April 2009. Highly resolved time series of velocity, energy, and energy flux are all dominated by the semidiurnal internal tide and show pronounced spring-neap cycles. However, the onset of springtime upwelling winds significantly alters the stratification during the record, causing the thermocline depth to shoal from about 100 to 40 m. The time-variable stratification must be accounted for because it significantly affects the energy, energy flux, the vertical modal structures, and the energy distribution among the modes. The internal tide changes from a partly horizontally standing wave to a more freely propagating wave when the thermocline shoals, suggesting more reflection from up canyon early in the observational record. Turbulence, computed from Thorpe scales, is greatest in the bottom 50–150 m and shows a spring-neap cycle. Depth-integrated dissipation is 3 times greater toward the end of the record, reaching 60 mW m−2 during the last spring tide. Dissipation near a submarine ridge is strongly tidally modulated, reaching 10−5 W kg−1 (10–15-m overturns) during spring tide and appears to be due to breaking lee waves. However, the phasing of the breaking is also affected by the changing stratification, occurring when isopycnals are deflected downward early in the record and upward toward the end.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3