Highly variable deep-sea currents over tidal and seasonal timescales

Author:

Bailey Lewis P.ORCID,Clare Michael A.,Hunt James E.ORCID,Kane Ian A.ORCID,Miramontes EldaORCID,Fonnesu Marco,Argiolas Ricardo,Malgesini Giuseppe,Wallerand Regis

Abstract

AbstractDeep-sea transport of sediment and associated matter, such as organic carbon, nutrients and pollutants, is controlled by near-bed currents. On the continental slope, these currents include episodic down-slope gravity-driven turbidity currents and more sustained thermohaline-driven along-slope contour currents. Recent advancements in deep-sea monitoring have catalysed a step change in our understanding of turbidity currents and contour currents individually. However, these processes rarely operate in isolation and the near-bed current regime is still to be quantified in a mixed system. Such measurements are crucial for understanding deep-sea particulate transport, calibrating numerical models and reconstructing palaeoflow. Here we use 4 years of observations from 34 instrument moorings in a mixed system offshore of Mozambique to show that near-bed currents are highly dynamic. We observe spatial variability in velocity over tidal and seasonal timescales, including reversals in current direction, and a strong steering and funnelling influence by local seabed morphology. The observed near-bed currents are capable of mobilizing and distributing sediments across the seabed, therefore complicating deep-sea particulate transport and reconstruction of palaeoceanographic conditions.

Funder

RCUK | Natural Environment Research Council

N/A

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3