Estimates of Baroclinic Tidal Sea Level and Currents from Lagrangian Drifters and Satellite Altimetry

Author:

Zaron Edward D.1ORCID,Elipot Shane2

Affiliation:

1. a Oregon State University, Corvallis, Oregon

2. b Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, Florida

Abstract

Abstract Internal waves generated by the interaction of the surface tides with topography are known to propagate long distances and lead to observable effects such as sea level variability, ocean currents, and mixing. In an effort to describe and predict these waves, the present work is concerned with using geographically distributed data from satellite altimeters and drifting buoys to estimate and map the baroclinic sea level associated with the M2, S2, N2, K1, and O1 tides. A new mapping methodology is developed, based on a mixed L1/L2-norm optimization, and compared with previously developed methods for tidal estimation from altimeter data. The altimeter and drifter data are considered separately in their roles for estimating tides and for cross-validating estimates obtained with independent data. Estimates obtained from altimetry and drifter data are found to agree remarkably well in regions where the drifter trajectories are spatially dense; however, heterogeneity of the drifter trajectories is a disadvantage when they are considered alone for tidal estimation. When the different data types are combined by using geodetic mission altimetry to cross validate estimates obtained with either exact-repeat altimetry or drifter data, and subsequently averaging the latter estimates, the estimates significantly improve on the previously published HRET8.1 model, as measured by their utility for predicting sea level and surface currents in the open ocean. The methodology has been applied to estimate the annual modulations of M2, which are found to have much smaller amplitudes compared to those reported in HRET8.1, and suggest that the latter estimates of these tides were not reliable. Significance Statement The mechanical and thermodynamic forcing of the ocean occurs primarily at very large scales associated with the gravitational perturbations of the sun and moon (tides), atmospheric wind stress, and solar insolation, but the frictional forces within the ocean act on very small scales. This research addresses the question of how the large-scale tidal forcing is transformed into the smaller-scale motion capable of being influenced by friction. The results show where internal waves are generated and how they transport energy across ocean basins to eventually be dissipated by friction. The results are useful to scientists interested in mapping the flows of mechanical energy in the ocean and predicting their influences on marine life, ocean temperature, and ocean currents.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Reference53 articles.

1. A new look at the statistical model identification;Akaike, H.,1974

2. Near-surface ocean kinetic energy distributions from drifter observations and numerical models;Arbic, B. K.,2022

3. Stable signal recovery from incomplete and inaccurate measurements;Candès, E.,2006

4. Accuracy assessment of global internal tide models using satellite altimetry;Carrere, L.,2021

5. Frequency diffusion of waves by unsteady flows;Dong, W.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3