Impact of entrainment-mixing and turbulent fluctuations on droplet size distributions in a cumulus cloud: An investigation using Lagrangian microphysics with a sub-grid-scale model

Author:

Chandrakar Kamal Kant1,Grabowski Wojciech W.1,Morrison Hugh1,Bryan George H.1

Affiliation:

1. National Center for Atmospheric Research†, Boulder, CO 80307

Abstract

AbstractEntrainment-mixing and turbulent fluctuations critically impact cloud droplet size distributions (DSDs) in cumulus clouds. This problem is investigated via a new sophisticated modeling framework using the CM1 LES model and a Lagrangian cloud microphysics scheme – the “super-droplet method” (SDM) – coupled with sub-grid-scale (SGS) schemes for particle transport and supersaturation fluctuations. This modeling framework is used to simulate a cumulus congestus cloud. Average DSDs in different cloud regions show broadening from entrainment and secondary cloud droplet activation (activation above the cloud base). DSD width increases with increasing entrainment-induced dilution as expected from past work, except in the most diluted cloud regions. The new modeling framework with SGS transport and supersaturation fluctuations allows a more sophisticated treatment of secondary activation compared to previous studies. In these simulations, it contributes about 25%of the cloud droplet population and impacts DSDs in two contrastingways: narrowing in extremely diluted regions and broadening in relatively less diluted. SGS supersaturation fluctuations contribute significantly to an increase in DSD width via condensation growth and evaporation. Mixing of super-droplets from SGS velocity fluctuations also broadens DSDs. The relative dispersion (ratio of DSD dispersion and mean radius) negatively correlates with grid-scale vertical velocity in updrafts, but is positively correlated in downdrafts. The latter is from droplet activation driven by positive SGS supersaturation fluctuations in grid-mean subsaturated conditions. Finally, the sensitivity to model grid length is evaluated. The SGS schemes have greater influence as the grid length is increased, and they partially compensate for the reduced model resolution.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3