Are turbulence effects on droplet collision–coalescence a key to understanding observed rain formation in clouds?

Author:

Chandrakar Kamal Kant1ORCID,Morrison Hugh1,Grabowski Wojciech W.1,Lawson R. Paul2ORCID

Affiliation:

1. Mesoscale & Microscale Meteorology Laboratory, NSF National Center for Atmospheric Research, Boulder, CO 80301

2. Stratton Park Engineering Company (SPEC) Incorporated, Boulder, CO 80301

Abstract

Rain formation is a critical factor governing the lifecycle and radiative forcing of clouds and therefore it is a key element of weather and climate. Cloud microphysics–turbulence interactions occur across a wide range of scales and are challenging to represent in atmospheric models with limited resolution. Based on past experiments and idealized numerical simulations, it has been postulated that cloud turbulence accelerates rain formation by enhancing drop collision–coalescence. We provide substantial evidence for significant impacts of turbulence on the evolution of cloud droplet size distributions and rain formation by comparing high-resolution observations of cumulus congestus clouds with state-of-the-art large-eddy simulations coupled with a Lagrangian particle-based microphysics scheme. Turbulent coalescence must be included in the model to accurately represent the observed drop size distributions, especially for drizzle drop sizes at lower heights in the cloud. Turbulence causes earlier rain formation and greater rain accumulation compared to simulations with gravitational coalescence only. The observed rain size distribution tail just above cloud base follows a power law scaling that deviates from theoretical scalings considering either a purely gravitation collision kernel or a turbulent kernel neglecting droplet inertial effects, providing additional evidence for turbulent coalescence in clouds. In contrast, large aerosols acting as cloud condensation nuclei (“giant CCN”) do not significantly impact rain formation owing to their long timescale to reach equilibrium wet size relative to the lifetime of rising cumulus thermals. Overall, turbulent drop coalescence exerts a dominant influence on rain initiation in warm cumulus clouds, with limited impacts of giant CCN.

Funder

National Aeronautics and Space Administration

U.S. Department of Energy

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3