Affiliation:
1. Max-Planck-Institut für Meteorologie, Hamburg, Germany
2. LMD/IPSL, CNRS, Sorbonne University, Paris, France
Abstract
AbstractWe use estimates of meso-scale vertical velocity and co-located cloud measurements from the second Next-Generation Aircraft Remote Sensing for Validation campaign (NARVAL2) in the tropical North Atlantic to show the observed impact of meso-scale vertical motion on tropical clouds. Our results not only confirm previously untested hypotheses about the role of dynamics being non-negligible in determining cloudiness, but go further to show that at the meso-scale, the dynamics has a more dominant control on cloudiness variability than thermodynamics. A simple mass-flux estimate reveals that meso-scale vertical velocity at the sub-cloud layer top explains much of the variations in peak shallow cumulus cloud fraction. In contrast, we find that thermodynamic cloud-controlling factors, such as humidity and stability, are unable to explain the variations in cloudiness at the meso-scale. Thus, capturing the observed variability of cloudiness may require not only a consideration of thermodynamic factors, but also dynamic ones such as the meso-scale vertical velocity.
Publisher
American Meteorological Society
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献