Widespread shallow mesoscale circulations observed in the trades

Author:

George GeetORCID,Stevens BjornORCID,Bony Sandrine,Vogel RaphaelaORCID,Naumann Ann KristinORCID

Abstract

AbstractUnderstanding the drivers of cloud organization is crucial for accurately estimating cloud feedbacks and their contribution to climate warming. Shallow mesoscale circulations are thought to play an important role in cloud organization, but they have not been observed. Here we present observational evidence for the existence of shallow mesoscale overturning circulations using divergence measurements made during the EUREC4A field campaign in the North Atlantic trades. Meteorological re-analyses reproduce the observed low-level divergence well and confirm the circulations to be mesoscale features (around 200 km across). We find that the shallow mesoscale circulations are associated with large variability in mesoscale vertical velocity and amplify moisture variance at the cloud base. Through their modulation of cloud-base moisture, the circulations influence how efficiently the subcloud layer dries, thus producing moist ascending branches and dry descending branches. The observed moisture variance differs from expectations from large-eddy simulations, which show the largest variance near the cloud top and negligible subcloud variance. The ubiquity of shallow mesoscale circulations, and their coupling to moisture and cloud fields, suggests that the strength and scale of mesoscale circulations are integral to determining how clouds respond to climate change.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3