Dropsonde-Based Heat Fluxes and Mixed Layer Height over the Sea Surface near the Korean Peninsula

Author:

Kim Min-Seong,Kwon Byung Hyuk,Goo Tae-Young,Jung Sueng-PilORCID

Abstract

Dropsonde-based sensible heat flux, latent heat flux, and buoyancy flux were estimated over the sea around the Korean Peninsula in 2021. During a preceding severe weather (SW) mission, a total of 243 dropsondes were released from a National Institute of Meteorological Sciences (NIMS) Atmospheric Research Aircraft (NARA). The heat fluxes were indirectly validated by comparison with model-based heat fluxes. The sensible heat flux calculated by the bulk transfer method depended entirely on the temperature difference between the sea level and atmosphere, whereas the latent heat flux was mainly affected by wind speed. Boundary layer heights above 800 m are closely related to buoyancy flux, which is greater in regions with higher sea surface temperatures. Furthermore, the utility of the dropsonde was confirmed in the marine atmospheric boundary layer (MABL) growth, which is difficult to observe in situ and, a relationship was proposed for estimating MABL based on mean meteorological data over the sea level.

Funder

Korea Meteorological Administration Research and Development

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference58 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3