Interactions between Water Vapor, Potential Vorticity, and Vertical Wind Shear in Quasi-Geostrophic Motions: Implications for Rotational Tropical Motion Systems

Author:

Adames Ángel F.1

Affiliation:

1. a Department of Climate and Space Science and Engineering, University of Michigan, Ann Arbor, Michigan

Abstract

AbstractA linear two-layer model is used to elucidate the role of prognostic moisture on quasigeostrophic (QG) motions in the presence of a mean thermal wind (). Solutions to the basic equations reveal two instabilities that can explain the growth of moist QG systems. The well-documented baroclinic instability is characterized by growth at the synoptic scale (horizontal scale of ~1000 km) and systems that grow from this instability tilt against the shear. Moisture–vortex instability—an instability that occurs when moisture and lower-tropospheric vorticity exhibit an in-phase component—exists only when moisture is prognostic. The instability is also strongest at the synoptic scale, but systems that grow from it exhibit a vertically stacked structure. When moisture is prognostic and is easterly, baroclinic instability exhibits a pronounced weakening while moisture vortex instability is amplified. The strengthening of moisture–vortex instability at the expense of baroclinic instability is due to the baroclinic () component of the lower-tropospheric flow. In westward-propagating systems, lower-tropospheric westerlies associated with an easterly advect anomalous moisture and the associated convection toward the low-level vortex. The advected convection causes the vertical structure of the wave to shift away from one that favors baroclinic instability to one that favors moisture–vortex instability. On the other hand, a westerly reinforces the phasing between moisture and vorticity necessary for baroclinic instability to occur. Based on these results, it is hypothesized that moisture–vortex instability is an important instability in humid regions of easterly such as the South Asian and West African monsoons.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3