The Reexamination of the Moisture–Vortex and Baroclinic Instabilities in the South Asian Monsoon

Author:

Chen Hongyu1,Li Tim12,Cui Jing1

Affiliation:

1. Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environmental Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China

2. Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA

Abstract

Observational analyses reveal that a dominant mode in the South Asian Monsoon region in boreal summer is a westward-propagating synoptic-scale disturbance with a typical wavelength of 4000 km that is coupled with moistening and precipitation processes. The disturbances exhibit an eastward tilt during their development before reaching their maximum activity center. A 2.5-layer model that extends a classic 2-level quasi-geostrophic model by including a prognostic lower-tropospheric moisture tendency equation and an interactive planetary boundary layer was constructed. The eigenvalue analysis of this model shows that the most unstable mode has a preferred zonal wavelength of 4000 km, a westward phase speed of 6 m s−1, an eastward tilt vertical structure, and a westward shift of maximum moisture/precipitation center relative to the lower-tropospheric vorticity center, all of which agree with the observations. Sensitivity experiments show that the moisture–vortex instability determines, to a large extent, the growth rate, while the baroclinic instability helps set up the preferred zonal scale. Ekman-pumping-induced vertical moisture advection prompts an in-phase component of perturbation moisture relative to the low-level cyclonic center, allowing the generation of available potential energy and perturbation growth, regardless of whether or not a low-level mean westerly is presented. In contrast to a previous study, the growth rate is reversely proportional to the convective adjustment time. The current work sheds light on understanding the moisture–vortex and the baroclinic instability in a monsoonal environment with a pronounced easterly vertical shear.

Funder

NSFC

Publisher

MDPI AG

Reference56 articles.

1. Contrasting the Indian and East Asian monsoons: Implications on geologic timescales;Wang;Mar. Geol.,2003

2. The East Asian summer monsoon: An overview;Yihui;Meteorol. Atmos. Phys.,2005

3. The variability of the Asian summer monsoon;Ding;気象集誌. 第 2 輯,2007

4. Ding, Y. (2004). East Asian Monsoon, World Scientific.

5. Seasonal march of Asian summer monsoon;Qian;Int. J. Climatol. A J. R. Meteorol. Soc.,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3