The Stirring Tropics: Theory of Moisture Mode–Hadley Cell Interactions

Author:

Adames Corraliza Ángel F.1ORCID,Mayta Víctor C.1

Affiliation:

1. a Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

Abstract

Abstract Interactions between large-scale waves and the Hadley cell are examined using a linear two-layer model on an f plane. A linear meridional moisture gradient determines the strength of the idealized Hadley cell. The trade winds are in thermal wind balance with a weak temperature gradient (WTG). The mean meridional moisture gradient is unstable to synoptic-scale (horizontal scale of ∼1000 km) moisture modes that are advected westward by the trade winds, reminiscent of oceanic tropical depression–like waves. Meridional moisture advection causes the moisture modes to grow from “moisture-vortex instability” (MVI), resulting in a poleward eddy moisture flux that flattens the zonal-mean meridional moisture gradient, thereby weakening the Hadley cell. The amplification of waves at the expense of the zonal-mean meridional moisture gradient implies a downscale latent energy cascade. The eddy moisture flux is opposed by a regeneration of the meridional moisture gradient by the Hadley cell. These Hadley cell–moisture mode interactions are reminiscent of quasigeostrophic interactions, except that wave activity is due to column moisture variance rather than potential vorticity variance. The interactions can result in predator–prey cycles in moisture mode activity and Hadley cell strength that are akin to ITCZ breakdown. It is proposed that moisture modes are the tropical analog to midlatitude baroclinic waves. MVI is analogous to baroclinic instability, stirring latent energy in the same way that dry baroclinic eddies stir sensible heat. These results indicate that moisture modes stabilize the Hadley cell and may be as important as the latter in global energy transport. Significance Statement The tropics are characterized by steady circulations such as the Hadley cell as well as a menagerie of tropical weather systems. Despite progress in our understanding of both, little is known about how the mean circulations and the weather systems interact with one another. Here we show that tropical waves can grow by extracting moisture from the Hadley cell, thereby weakening it. They also transport moisture to higher latitudes. Our results challenge the notion that the Hadley cell is the sole transporter of energy out of the tropics and instead favor a view where tropical waves are also essential for the global energy balance. They dry the humid regions and moisten the drier regions via stirring.

Funder

nsf

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference130 articles.

1. Interactions between water vapor, potential vorticity, and vertical wind shear in quasi-geostrophic motions: Implications for rotational tropical motion systems;Adames, Á. F.,2021

2. The basic equations under weak temperature gradient balance: Formulation, scaling, and types of convectively coupled motions;Adames, Á. F.,2022

3. Interactions between water vapor and potential vorticity in synoptic-scale monsoonal disturbances: Moisture vortex instability;Adames, Á. F.,2018

4. Moisture mode theory’s contribution to advances in our understanding of the Madden-Julian Oscillation and other tropical disturbances;Adames, Á. F.,2021

5. Characterization of moist processes associated with changes in the propagation of the MJO with increasing CO2;Adames, Á. F.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3