Probabilistic Forecast Guidance for Severe Thunderstorms Based on the Identification of Extreme Phenomena in Convection-Allowing Model Forecasts

Author:

Sobash Ryan A.1,Kain John S.2,Bright David R.3,Dean Andrew R.4,Coniglio Michael C.2,Weiss Steven J.4

Affiliation:

1. School of Meteorology, University of Oklahoma, Norman, Oklahoma

2. NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

3. NOAA/NCEP/Aviation Weather Center, Kansas City, Missouri

4. NOAA/NCEP/Storm Prediction Center, Norman, Oklahoma

Abstract

Abstract With the advent of convection-allowing NWP models (CAMs) comes the potential for new forms of forecast guidance. While CAMs lack the required resolution to simulate many severe phenomena associated with convection (e.g., large hail, downburst winds, and tornadoes), they can still provide unique guidance for the occurrence of these phenomena if “extreme” patterns of behavior in simulated storms are strongly correlated with observed severe phenomena. This concept is explored using output from a series of CAM forecasts generated on a daily basis during the spring of 2008. This output is mined for the presence of extreme values of updraft helicity (UH), a diagnostic field used to identify supercellular storms. Extreme values of the UH field are flagged as simulated “surrogate” severe weather reports and the spatial correspondence between these surrogate reports and actual observed severe reports is determined. In addition, probabilistic forecasts [surrogate severe probabilistic forecasts (SSPFs)] are created from each field’s simulated surrogate severe reports using a Gaussian smoother. The simulated surrogate reports are capable of reproducing the seasonal climatology observed within the field of actual reports. The SSPFs created from the surrogates are verified using ROC curves and reliability diagrams and the sensitivity of the verification metrics to the smoothing parameter in the Gaussian distribution is tested. The SSPFs produce reliable forecast probabilities with minimal calibration. These results demonstrate that a relatively straightforward postprocessing procedure, which focuses on the characteristics of explicitly predicted convective entities, can provide reliable severe weather forecast guidance. It is anticipated that this technique will be even more valuable when implemented within a convection-allowing ensemble forecasting system.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 127 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3