Viscosity-Dependent Internal Variability in a Model of the North Pacific

Author:

Dawe Jordan T.1,Thompson Lu Anne1

Affiliation:

1. Department of Oceanography, University of Washington, Seattle, Washington

Abstract

Abstract A 2°-resolution isopycnal model of the North Pacific Ocean is shown to produce anomalies that propagate around the subtropical gyre on the decadal time scale that do not appear in a 1°-resolution version of the same model. A principal oscillation pattern (POP) analysis of the isopycnal interface anomaly is performed to examine the dynamics responsible for the anomaly generation. The POPs show a coherent oscillation around the entire subtropical gyre with two centers of action, one in the Central Mode Water (CMW) region, the other in the Subtropical Countercurrent (STCC). Lead–lag covariances between the subduction rate in the CMW and the layer thickness along the oscillation path indicate that anomalous subduction events are not the driving mechanism for the oscillation. A linearized quasigeostrophic mode analysis shows that the anomalies are generated by flow instability in the region of the STCC. The instability disappears in the 1° model because of changes in the horizontal viscosity, which is set in each model to the minimum value necessary to resolve the western boundary current and preserve numerical stability. A criterion for model resolution of an instability of a given length and time scale damped by biharmonic viscosity is derived. The enhancement of the large-scale instabilities in the low-resolution model emphasizes the importance of achieving mesoscale resolution in ocean models used for climate studies.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3