Decadal Response of Global Circulation to Southern Ocean Zonal Wind Stress Perturbation

Author:

Klinger Barry A.1,Cruz Carlos1

Affiliation:

1. Department of Atmospheric, Oceanic, and Earth Sciences, George Mason University, Fairfax, Virginia

Abstract

Abstract A substantial component of North Atlantic Deep Water formation may be driven by westerly wind stress over the Southern Ocean. Variability of this wind stress on decadal time scales may lead to circulation variability far from the forcing region. The Hybrid Coordinate Ocean Model (HYCOM), a numerical ocean model, is used to investigate the spatial patterns and the time scales associated with such wind variability. The evolution of circulation and density anomalies is observed by comparing one 80-yr simulation, forced in part by relatively strong Southern Hemisphere westerlies, with a simulation driven by climatological wind. The volume transport anomaly takes about 10 yr to reach near-full strength in the entire Southern Hemisphere; however, in the Northern Hemisphere, it grows for the duration of the run. The Southern Hemisphere Indo-Pacific volume transport anomaly is about twice the strength of that found in the Atlantic. In the thermocline, water exits the southern westerlies belt in a broad flow that feeds a western boundary current (WBC) in both the Atlantic and Pacific Oceans. These WBCs in turn feed an Indonesian Throughflow from the Pacific and cyclonic gyres in the far north, which are broadly consistent with the Stommel–Arons theory. The deep return flow in each hemisphere is strongly affected by deep-sea ridges, which leads to a number of midocean “WBCs.” The wind perturbation causes isopycnals to sink over most of the basin. After about 20 yr, this sinking is very roughly uniform with latitude, though it varies by basin.

Publisher

American Meteorological Society

Subject

Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3