Planetary-wave induced strengthening of the AMOC forced by poleward intensified Southern Hemisphere westerly winds

Author:

Webb D. J.1,Spence P.2,Holmes R. M.13,England M. H.14

Affiliation:

1. 1 Climate Change Research Centre, University of New South Wales, Sydney 2052, NSW, Australia

2. 2 Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia

3. 3 School of Mathematics and Statistics, University of New South Wales, Sydney 2052, NSW, Australia

4. 4 Australian Centre for Excellence in Antarctic Science, University of New South Wales, Sydney 2052, NSW, Australia

Abstract

AbstractThe Atlantic meridional overturning circulation (AMOC) plays a key role in determining the distribution of heat and nutrients in the global ocean. Climate models suggest that Southern Ocean winds will strengthen and shift poleward in the future, which could have implications for future AMOC trends. Using a coupled global-ocean sea-ice model at 1/4°horizontal resolution, we study the response of the North Atlantic overturning to two anomalous Southern Ocean wind-forcing (τ+15%), and a poleward intensification(). In both scenarios a strengthening in the North Atlantic overturning develops within a decade, with a much stronger response in the case. In , we find that the primary link between the North Atlantic response and the Southern Ocean forcing is via the propagation of baroclinic waves. In fact, due to the rapid northward propagation of these waves, changes in the AMOC in the case appear to originate in the North Atlantic and propagate southward, whereas in the τ+15% case AMOC anomalies propagate northward from the Southern Ocean. We find the difference to be predominately caused by the sign of the baroclinic waves propagating from the forcing region into the North Atlantic; downwelling in the τ+15% case, versus upwelling in the case. In the case, upwelling waves propagating into the NADW formation regions along shelf-slope topography bringing dense water to the surface. This reduces vertical density gradients leading to deeper wintertime convective overturn of surface waters, and an intensification of the AMOC.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3