An Enhancement of Low-Frequency Variability in the Kuroshio–Oyashio Extension in CCSM3 owing to Ocean Model Biases

Author:

Thompson Lu Anne1,Kwon Young-Oh2

Affiliation:

1. University of Washington, Seattle, Washington

2. Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Abstract

Abstract Enhanced decadal variability in sea surface temperature (SST) centered on the Kuroshio Extension (KE) has been found in the Community Climate System Model version 3 (CCSM3) as well as in other coupled climate models. This decadal peak has higher energy than is found in nature, almost twice as large in some cases. While previous analyses have concentrated on the mechanisms for such decadal variability in coupled models, an analysis of the causes of excessive SST response to changes in wind stress has been missing. Here, a detailed comparison of the relationships between interannual changes in SST and sea surface height (SSH) as a proxy for geostrophic surface currents in the region in both CCSM3 and observations, and how these relationships depend on the mean ocean circulation, temperature, and salinity, is made. We use observationally based climatological temperature and salinity fields as well as satellite-based SSH and SST fields for comparison. The primary cause for the excessive SST variability is the coincidence of the mean KE with the region of largest SST gradients in the model. In observations, these two regions are separated by almost 500 km. In addition, the too shallow surface oceanic mixed layer in March north of the KE in the subarctic Pacific contributes to the biases. These biases are not unique to CCSM3 and suggest that mean biases in current, temperature, and salinity structures in separated western boundary current regions can exert a large influence on the size of modeled decadal SST variability.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference43 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3