Precipitation Forecasting Using Doppler Radar Data, a Cloud Model with Adjoint, and the Weather Research and Forecasting Model: Real Case Studies during SoWMEX in Taiwan

Author:

Tai Sheng-Lun1,Liou Yu-Chieng1,Sun Juanzhen2,Chang Shao-Fan1,Kuo Min-Chao1

Affiliation:

1. Department of Atmospheric Sciences, National Central University, Jhongli City, Taiwan

2. National Center for Atmospheric Research, Boulder, Colorado

Abstract

Abstract The quantitative precipitation forecast (QPF) capability of the Variational Doppler Radar Analysis System (VDRAS) is investigated in the Taiwan area, where the complex topography and surrounding oceans pose great challenges to accurate rainfall prediction. Two real cases observed during intensive operation periods (IOPs) 4 and 8 of the 2008 Southwest Monsoon Experiment (SoWMEX) are selected for this study. Experiments are first carried out to explore the sensitivity of the retrieved fields and model forecasts with respect to different background fields. All results after assimilation of the Doppler radar data indicate that the principal kinematic and thermodynamic features recovered by the VDRAS four-dimensional variational data assimilation (4DVAR) technique are rather reasonable. Starting from a background field generated by blending ground-based in situ measurements (radiosonde and surface mesonet station) and reanalysis data over the oceans, VDRAS is capable of capturing the evolution of the major precipitation systems after 2 h of simulation. The model QPF capability is generally comparable to or better than that obtained using only in situ observations or reanalysis data to prepare the background fields. In a second set of experiments, it is proposed to merge the VDRAS analysis field with the Weather Research and Forecasting Model (WRF), and let the latter continue with the following model integration. The results indicate that through this combination, the performance of the model QPF can be further improved. The accuracy of the predicted 2-h accumulated rainfall turns out to be significantly higher than that generated by using VDRAS or WRF alone. This can be attributed to the assimilation of meso- and convective-scale information, embedded in the radar data, into VDRAS, and to better treatment of the topographic effects by the WRF simulation. The results illustrated in this study demonstrate a feasible extension for the application of VDRAS in other regions with similar geographic conditions and observational limitations.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3