A WRF/WRF-Hydro Coupled Forecasting System with Real-Time Precipitation–Runoff Updating Based on 3Dvar Data Assimilation and Deep Learning

Author:

Liu Yuchen12,Liu Jia2,Li Chuanzhe2,Liu Lusan1,Wang Yu1

Affiliation:

1. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China

2. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

Abstract

This study established a WRF/WRF-Hydro coupled forecasting system for precipitation–runoff forecasting in the Daqing River basin in northern China. To fully enhance the forecasting skill of the coupled system, real-time updating was performed for both the WRF precipitation forecast and WRF-Hydro forecasted runoff. Three-dimensional variational (3Dvar) multi-source data assimilation was implemented using the WRF model by incorporating hourly weather radar reflectivity and conventional meteorological observations to improve the accuracy of the forecasted precipitation. A deep learning approach, i.e., long short-term memory (LSTM) networks, was adopted to improve the accuracy of the WRF-Hydro forecasted flow. The results showed that hourly data assimilation had a positive impact on the range and trends of the WRF precipitation forecasts. The quality of the WRF precipitation outputs had a significant impact on the performance of WRF-Hydro in forecasting the flow at the catchment outlet. With the runoff driven by precipitation forecasts being updated by 3Dvar data assimilation, the error of flood peak flow was decreased by 3.02–57.42%, the error of flood volume was decreased by 6.34–39.30%, and the Nash efficiency coefficient was increased by 0.15–0.52. The implementation of LSTM can effectively reduce the forecasting errors of the coupled system, particularly those of the time-to-peak and peak flow volumes.

Funder

National Natural Science Foundation of China

National Key Research and Development Project

Major Science and Technology Program for Water Pollution Control and Treatment

The yangtze river joint research phase II program

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3