A Comparison of Precipitation Forecast Skill between Small Convection-Allowing and Large Convection-Parameterizing Ensembles

Author:

Clark Adam J.1,Gallus William A.1,Xue Ming2,Kong Fanyou3

Affiliation:

1. Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa

2. School of Meteorology and Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

3. Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Abstract

Abstract An experiment has been designed to evaluate and compare precipitation forecasts from a 5-member, 4-km grid-spacing (ENS4) and a 15-member, 20-km grid-spacing (ENS20) Weather Research and Forecasting (WRF) model ensemble, which cover a similar domain over the central United States. The ensemble forecasts are initialized at 2100 UTC on 23 different dates and cover forecast lead times up to 33 h. Previous work has demonstrated that simulations using convection-allowing resolution (CAR; dx ∼ 4 km) have a better representation of the spatial and temporal statistical properties of convective precipitation than coarser models using convective parameterizations. In addition, higher resolution should lead to greater ensemble spread as smaller scales of motion are resolved. Thus, CAR ensembles should provide more accurate and reliable probabilistic forecasts than parameterized-convection resolution (PCR) ensembles. Computation of various precipitation skill metrics for probabilistic and deterministic forecasts reveals that ENS4 generally provides more accurate precipitation forecasts than ENS20, with the differences tending to be statistically significant for precipitation thresholds above 0.25 in. at forecast lead times of 9–21 h (0600–1800 UTC) for all accumulation intervals analyzed (1, 3, and 6 h). In addition, an analysis of rank histograms and statistical consistency reveals that faster error growth in ENS4 eventually leads to more reliable precipitation forecasts in ENS4 than in ENS20. For the cases examined, these results imply that the skill gained by increasing to CAR outweighs the skill lost by decreasing the ensemble size. Thus, when computational capabilities become available, it will be highly desirable to increase the ensemble resolution from PCR to CAR, even if the size of the ensemble has to be reduced.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference83 articles.

1. The NCEP hourly multisensor U.S. precipitation analysis for operations and GCIP research.;Baldwin,1997

2. Verification of mesoscale features in NWP models.;Baldwin,2001

3. A new convective adjustment scheme. Part I: Observational and theoretical basis.;Betts;Quart. J. Roy. Meteor. Soc.,1986

4. A new convective adjustment scheme. Part II: Single-column tests using GATE wave, BOMEX, ATEX and Arctic air-mass data sets.;Betts;Quart. J. Roy. Meteor. Soc.,1986

5. Resolution requirements for the simulation of deep moist convection.;Bryan;Mon. Wea. Rev.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3