Verification of RUC 0–1-h Forecasts and SPC Mesoscale Analyses Using VORTEX2 Soundings

Author:

Coniglio Michael C.1

Affiliation:

1. NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

Abstract This study uses radiosonde observations obtained during the second phase of the Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) to verify base-state variables and severe-weather-related parameters calculated from Rapid Update Cycle (RUC) analyses and 1-h forecasts, as well as those calculated from the operational surface objective analysis system used at the Storm Prediction Center (the SFCOA). The rapid growth in temperature, humidity, and wind errors from 0 to 1 h seen at all levels in a past RUC verification study by Benjamin et al. is not seen in the present study. This could be because the verification observations are also assimilated into the RUC in the Benjamin et al. study, whereas the verification observations in the present study are not. In the upper troposphere, the present study shows large errors in relative humidity, mostly related to a large moist bias. The planetary boundary layer tends to be too shallow in the RUC analyses and 1-h forecasts. Wind speeds tend to be too fast in the lowest 1 km and too slow in the 2–4-km layer. RUC and SFCOA 1-h forecast errors for many important severe weather parameters are large relative to their potential impact on convective evolution. However, the SFCOA significantly improves upon the biases seen in most of the 1-h RUC forecasts for the base-state surface variables and most of the other severe-weather-related parameters, indicating that the SFCOA has a more significant impact in reducing the biases in the 1-h RUC forecasts than on the root-mean-squared errors.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3