Affiliation:
1. a Department of Earth and Atmospheric Sciences, University at Albany, State University of New York, Albany, New York
2. b University of Toulouse, LEGOS/OMP, Toulouse, France
Abstract
AbstractThis paper explores a new mechanism for in situ genesis of easterly waves (EWs) over the tropical eastern Pacific Ocean (EPAC). Using an idealized primitive equation model, it is shown that EWs can be triggered by finite-amplitude transient heating close to the midlevel jet at about 15°N over the EPAC and intra-Americas sea region. The atmospheric response to heating initiates EWs downstream, showing an EW structure within 4 days, with a wavelength and propagation speed of about 2000 km and 4.6 m s−1, respectively, resembling EWs described in the literature. The most sensitive location for EW initiation from finite-amplitude transient heating is located over the northern part of South America and extends to the EPAC. The closer the heating is to the jet, the bigger the response is. A stratiform heating profile is the most efficient at triggering EPAC EWs. Comparisons of simulated EWs over the EPAC and West Africa reveal similar structures but with a shorter wavelength and much weaker amplitudes over the EPAC. EPAC EWs are dominated by horizontal tilts against the shear on the equatorial side of the jet, consistent with barotropic growth, with weaker low-level amplitudes relative to those seen over West Africa. These differences arise from differences in the mean state EPAC having a shorter and weaker midlevel jet with less baroclinicity.
Funder
Consejo Nacional de Ciencia y Tecnología
National Aeronautics and Space Administration
Publisher
American Meteorological Society
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献