Precipitation Characteristics of Easterly Waves Across the Global Tropics

Author:

Hollis Margaret A.1ORCID,Stachnik Justin P.2ORCID,Lewis‐Merritt Carrie2,McCrary Rachel R.3ORCID,Martin Elinor R.1ORCID

Affiliation:

1. School of Meteorology University of Oklahoma Norman OK USA

2. Department of Geography and Atmospheric Science University of Kansas Lawrence KS USA

3. NSF National Center for Atmospheric Research Boulder CO USA

Abstract

AbstractTropical easterly waves (TEWs) are a recurrent mode of low‐latitude weather that are often convectively coupled and impact precipitation extremes. Previous work has examined the development of TEWs and their associated precipitation for individual seasons or regional domains, but no studies exist that document the importance of TEW precipitation globally. This study quantifies the precipitation associated with TEWs across the entire tropics using satellite (Integrated Multi‐satellitE Retrievals for the Global Precipitation Measurement [IMERG]) and reanalysis (Modern‐Era Retrospective analysis for Research and Applications, Version 2 [MERRA‐2]) data. Traditional space‐time filtering of precipitation reveals a mostly similar climatological power distribution for westward traveling, synoptic period disturbances corresponding to TEWs within all data sets. Using objective tracking, we find that areas with maximum TEW frequency such as the North Atlantic, Equatorial Pacific, and Indian Ocean have the highest accumulation of TEW‐associated precipitation. TEWs account for at most 30% of total annual precipitation in regions where they commonly occur and 1%–5% over much of the tropics. Vertically collocated storms, where the 850 and 700 hPa tracks correspond with each other, have higher conditional rain rates and indicate that waves with vertical development produce stronger and more organized convection. We find similar regional patterns using MERRA‐2 precipitation and latent heating, although the importance and contribution of TEWs to the background are reduced compared to IMERG. While the broad pattern of TEW associated precipitation in MERRA‐2 is like observations, the underestimation of rainfall contributions from TEWs, coupled with occasional false alarms in reanalysis data, suggests that MERRA‐2 does not capture organized convection within TEWs correctly.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3