Continuous Observations of Aerosol Profiles with a Two-Wavelength Mie-Scattering Lidar in Guangzhou in PRD2006

Author:

Sugimoto Nobuo1,Nishizawa Tomoaki1,Liu Xingang2,Matsui Ichiro1,Shimizu Atsushi1,Zhang Yuanhang2,Kim Young J.3,Li Ruhao4,Liu Jun4

Affiliation:

1. National Institute for Environmental Studies, Tsukuba, Japan

2. College of Environmental Sciences and Engineering, Peking University, Beijing, China

3. Advanced Environmental Monitoring Research Center, Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea

4. Guangdong Provincial Environmental Monitoring Center, Guangdong, China

Abstract

Abstract Continuous lidar observation was performed in Guangzhou, China, in the Pearl River Delta (PRD) observation campaign in July 2006 (PRD2006), using a two-wavelength Mie-scattering lidar (532 and 1064 nm) with a depolarization measurement channel at 532 nm. The profiles of the extinction coefficients at 532 nm were derived using the two-wavelength method. The planetary boundary layer (PBL) height and the cloud-base height were derived from the signals at 1064 nm. Two air pollution episodes occurred during the campaign, one on 10–12 July and the other on 22–24 July. Two events with a typhoon-driven flow of northern air occurred on 15 and 25 July. Elevated aerosol layers were observed at 1 km above ground level on 12 July and on 22 and 23 July. This layer was also observed by the lidar aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO) at 0200 LT 23 July 2006 near Guangzhou. The distribution observed by CALIPSO and trajectory analysis revealed that the layer was probably generated within the PRD region. The time–height indication of the ground-based lidar suggested that aerosols in the elevated layer were transported to the ground by convection when the PBL height reached the elevated layer. The surface concentration of elemental carbon also exhibited a corresponding increase. The air pollution index at Guangzhou, Shaoguan, Changsha, and other cities indicated temporal variations, implying the regional transport of air pollution in the typhoon episodes. Trajectory analysis indicated that an air mass from the north arrived after 24 July in the air pollution episode of 22–25 July 2006.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3