Author:
Zhang Zhijuan,Mu Ling,Li Chen
Abstract
The planetary boundary layer height is a very important parameter in the atmosphere because it determines the range where the most effective dispersion processes take place, and it serves as a medium for the vertical transport of heat, moisture, and pollutants. The accurate estimation of boundary layer height (BLH) is vital for air pollution prediction. In this paper, the BLH estimated by AD-Net was compared with that from the ECMWFs over East Asia from September 2015 to August 2018. A continuous 24 h BLH estimation from AD-Net generally matched with the aerosol vertical structures. Diurnal and seasonal variation and spatial variation of BLH can also be shown, suggesting the good performance of AD-Net BLH. The comparison of seasonal mean BLH between AD-Net and ECMWFs was conducted at 20 lidar sites. On average, there was an underestimation of the ECMWFs, mostly in summer and winter. A significant disagreement between AD-Net and the ECMWFs was noted, especially over coastal areas and mountain areas. In order to investigate the difference between them, two BLHs were compared under different land cover types and climate conditions. In general, the BLH of the ECMWFs was less than that of AD-Net over most of the land cover types in summer and winter. The smallest differences (0.26 km) existed over water surfaces in winter compared with AD-Net, and the largest underestimation (1.42 km) occurred over grassland surfaces in summer. Similarly, all the BLHs of the ECMWFs were lesser than those of AD-Net under different climatological conditions in summer and winter. The mean difference between AD-Net BLH and ECMWFs BLH was 1.05, 0.71, and 0.48 km for arid regions, semi-arid and semi-wet regions, and wet regions, respectively. The largest underestimation occurred over arid regions in winter, with a value of 1.42 km. The smallest underestimation occurred over wet regions, with a value of 0.27 km. The present research provides better insight into the BLH performance in the ECMWFs reanalysis data. The new continuous PBL dataset can be used to improve the model parameterization of PBL and our understanding of the atmospheric transport of pollutants which affect air quality and human health.
Funder
National Natural Science Foundation of China
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献