Indications of Stratified Turbulence in a Mechanistic GCM

Author:

Brune Sebastian1,Becker Erich1

Affiliation:

1. Leibniz-Institute of Atmospheric Physics, University of Rostock, Kühlungsborn, Germany

Abstract

Abstract The horizontal kinetic energy spectrum and its budget are analyzed on the basis of a general circulation model with simplistic parameterizations of radiative and latent heating. A spectral truncation at total wavenumber 330 is combined with a level spacing of either ~200 m or ~1.5 km from the midtroposphere to the lower stratosphere. The subgrid-scale parameterization consists of a Smagorinsky-type anisotropic diffusion scheme that is scaled by a Richardson criterion for dynamic instability and combined with a stress-tensor-based hyperdiffusion that acts only on the very smallest resolved scales. Simulations with both vertical resolutions show a transition from the synoptic −3 to the mesoscale slope in the upper-tropospheric kinetic energy spectrum. Analysis of the spectral budget indicates that the mesoscale slope can be interpreted as stratified turbulence, as has been proposed in recent works of Lindborg and others, only when a high vertical resolution is applied. In this case, the mesoscale kinetic energy around 300–150 hPa is dominated by the nonrotational flow, and the forward horizontal energy cascade is accompanied by an equally strong forward spectral flux due to adiabatic conversion. This adiabatic conversion mainly results from a vertical potential energy flux that originates in the midtroposphere, where the mesoscale adiabatic conversion is negative. For a conventionally coarse vertical resolution, however, the mesoscale slope in the troposphere is dominated by the rotational flow, and the spectral flux due to adiabatic conversion is not comparable to that associated with horizontal advection.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3