Affiliation:
1. College of Meteorology and Oceanography National University of Defense Technology Changsha China
Abstract
AbstractThe responses of atmospheric kinetic energy (KE) spectra to three convective parameterizations (CPs) in global high‐resolution simulations are revealed. The results show that the KE spectra exhibit high sensitivity to the CPs, mainly at mesoscales in the middle and upper troposphere. The New Tiedtke scheme produces the steepest mesoscale slope, followed by the Kain‐Fritsch scheme and then the Grell‐Freitas scheme. In general, there is a compensating relationship between latent heat released by the CP and microphysics parameterization (MP). The less latent heat released by the CP is compensated by the more latent heat released by the MP. The shallowest mesoscale spectra for the Grell‐Freitas scheme are related to the strongest downscale cascade dominated by the rotational component of the flow, and this is attributed to more latent heat released from MP enhancing the intensity of vorticity in the troposphere and producing more gravity wave activities in the lower stratosphere.
Funder
National Natural Science Foundation of China
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Geophysics