Sensitivity of the Upper Mesosphere to the Lorenz Energy Cycle of the Troposphere

Author:

Becker Erich1

Affiliation:

1. Leibniz Institute of Atmospheric Physics, Kühlungsborn, Germany

Abstract

Abstract The concept of a mechanistic general circulation model that explicitly simulates the gravity wave drag in the extratropical upper mesosphere in a self-consistent fashion is proposed. The methodology consists of 1) a standard spectral dynamical core with high resolution, 2) idealized formulations of radiative and latent heating, and 3) a hydrodynamically consistent turbulent diffusion scheme with the diffusion coefficients based on Smagorinsky’s generalized mixing-length formulation and scaled by the Richardson criterion. The model reproduces various mean and variable features of the wave-driven general circulation from the boundary layer to the mesopause region during January. The dissipation of mesoscale kinetic energy (defined as the frictional heating due to the mesoscale flow) in the extratropical troposphere is found to indicate the tropospheric gravity wave sources relevant for the mesosphere/lower thermosphere. This motivates a sensitivity experiment in which the large-scale differential heating is perturbed such that the Lorenz energy cycle as measured by the globally integrated frictional heating becomes stronger. As a result, both the resolved gravity wave activity and the dissipation of mesoscale kinetic energy in the extratropical troposphere are amplified. These changes have strong remote effects in the summer mesopause region, where the gravity wave drag, the residual meridional wind, and the frictional heating shift to lower altitudes. Furthermore, temperatures decrease below the summer mesopause and increase farther up, which is accompanied by an anomalous eastward wind component around the mesopause.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference62 articles.

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3