The Primary Nonlinear Dynamics of Modal and Nonmodal Perturbations of Monochromatic Inertia–Gravity Waves

Author:

Achatz Ulrich1

Affiliation:

1. Leibniz-Institut für Atmosphärenphysik, Universität Rostock, Kühlungsborn, Germany

Abstract

Abstract The breaking of an inertia–gravity wave (IGW), initiated by its leading normal modes (NMs) or singular vectors (SVs), and the resulting small-scale eddies are investigated by means of direct numerical simulations of a Boussinesq fluid characterizing the upper mesosphere. The focus is on the primary nonlinear dynamics, neglecting the effect of secondary instabilities. It is found that the structures with the strongest impact on the IGW and also the largest turbulence amplitudes are the NM (for a statically unstable IGW) or short-term SV (statically and dynamically stable IGW) propagating horizontally transversely with respect to the IGW, possibly in agreement with observations of airglow ripples in conjunction with statically unstable IGWs. In both cases these leading structures reduce the IGW amplitude well below the static and dynamic instability thresholds. The resulting turbulent dissipation rates are within the range of available estimates from rocket soundings, even for IGWs at amplitudes low enough precluding NM instabilities. Thus SVs can help explain turbulence occurring under conditions not amenable for the classic interpretation via static and dynamic instability. Because of the important role of the statically enhanced roll mechanism in the energy exchange between IGW and eddies, the turbulent velocity fields are often conspicuously anisotropic. The spatial turbulence distribution is determined to a large degree by the elliptically polarized horizontal velocity field of the IGW.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3