Optimal Growth in Inertia–Gravity Wave Packets: Energetics, Long-Term Development, and Three-Dimensional Structure

Author:

Achatz Ulrich1,Schmitz Gerhard1

Affiliation:

1. Leibniz-Institut für Atmosphärenphysik an der Universität Rostock, Kühlungsborn, Germany

Abstract

Abstract Using a hierarchy of three models of increasing realism and complexity, and expanding on a previous study, optimal perturbations of inertia–gravity wave (IGW) packets are studied with respect to several aspects. It is shown that normal modes are comparatively less able to extract energy from the IGW over finite time due to their time-invariant structure, while singular vectors (SVs) can adjust their dynamical fields flexibly so as to optimize the statically enhanced roll and Orr mechanisms by which they grow. On longer time scales, where the time dependence of the IGW packet precludes a normal-mode analysis, optimal growth is found to further amplify suitable perturbations. The propagation characteristics of these exhibit critical layer interactions for horizontal propagation directions transverse with respect to the IGW, preventing significant vertical propagation, while parallel and obliquely propagating perturbations of sufficiently long horizontal scales are found to radiate gravity waves into altitudes not directly affected by the IGW. The SVs with shorter wavelengths, as found for short optimization times, stay confined via a linear wave duct near the altitude of least static stability where they are excited. At optimization times of the order of the IGW period the leading SVs, with an energy growth by about three orders of magnitude, propagate obliquely, possibly in correspondence to previous results by others from simulations of nonlinear IGW breakdown. The three-dimensional structure of SVs shows an amplitude modulation strictly confining the perturbations also to the horizontal location of least static stability, suggesting a picture of turbulence onset in IGW packets where local patches of growing perturbations initially dominate.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3