Inertia–Gravity Waves Breaking in the Middle Atmosphere at High Latitudes: Energy Transfer and Dissipation Tensor Anisotropy

Author:

Pestana Tiago1ORCID,Thalhammer Matthias1,Hickel Stefan1

Affiliation:

1. Aerodynamics Group, Faculty of Aerospace Engineering, Technische Universiteit Delft, Delft, Netherlands

Abstract

Abstract We present direct numerical simulations of inertia–gravity waves breaking in the middle–upper mesosphere. We consider two different altitudes, which correspond to the Reynolds number of 28 647 and 114 591 based on wavelength and buoyancy period. While the former was studied by Remmler et al., it is here repeated at a higher resolution and serves as a baseline for comparison with the high-Reynolds-number case. The simulations are designed based on the study of Fruman et al., and are initialized by superimposing primary and secondary perturbations to the convectively unstable base wave. Transient growth leads to an almost instantaneous wave breaking and secondary bursts of turbulence. We show that this process is characterized by the formation of fine flow structures that are predominantly located in the vicinity of the wave’s least stable point. During the wave breakdown, the energy dissipation rate tends to be an isotropic tensor, whereas it is strongly anisotropic in between the breaking events. We find that the vertical kinetic energy spectra exhibit a clear 5/3 scaling law at instants of intense energy dissipation rate and a cubic power law at calmer periods. The term-by-term energy budget reveals that the pressure term is the most important contributor to the global energy budget, as it couples the vertical and the horizontal kinetic energy. During the breaking events, the local energy transfer is predominantly from the mean to the fluctuating field and the kinetic energy production is in balance with the pseudo kinetic energy dissipation rate.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Field Extended Birefringent Static Doppler Wind Imaging Interferometer;Journal of Physics: Conference Series;2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3