Development and Evaluation of Ensemble Consensus Precipitation Estimates over High Mountain Asia

Author:

Maina Fadji Z.12ORCID,Kumar Sujay V.1,Dollan Ishrat Jahan3,Maggioni Viviana3

Affiliation:

1. a NASA Goddard Space Flight Center, Hydrological Sciences Laboratory, Greenbelt, Maryland

2. b Universities Space Research Association, Goddard Earth Sciences Technology and Research Studies and Investigations, Columbia, Maryland

3. c Department of Civil, Environmental, and Infrastructure Engineering, George Mason University, Fairfax, Virginia

Abstract

Abstract Precipitation estimates are highly uncertain in complex regions such as High Mountain Asia (HMA), where ground measurements are very difficult to obtain and atmospheric dynamics poorly understood. Though gridded products derived from satellite-based observations and/or reanalysis can provide temporally and spatially distributed estimates of precipitation, there are significant inconsistencies in these products. As such, to date, there is little agreement in the community on the best and most accurate gridded precipitation product in HMA, which is likely area dependent because of HMA’s strong heterogeneities and complex orography. Targeting these gaps, this article presents the development of a consensus ensemble precipitation product using three gridded precipitation datasets [the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG), the Climate Hazards Group Infrared Precipitation with Station data (CHIRPS), and the ECMWF reanalysis ERA5] with a localized probability matched mean (LPM) approach. We evaluate the performance of the LPM estimate along with a simple ensemble mean (EM) estimate to overcome the differences and disparities of the three selected constituent products on long-term averages and trends in HMA. Our analysis demonstrates that LPM reduces the high biases embedded in the ensemble members and provides more realistic spatial patterns compared to EM. LPM is also a good alternative for merging data products with different spatiotemporal resolutions. By filtering disparities among the individual ensemble members, LPM overcomes the problem of a certain product performing well only in a particular area and provides a consensus estimate with plausible temporal trends.

Funder

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3