Assimilation of TRMM Multisatellite Precipitation Analysis with a Low-Resolution NCEP Global Forecast System

Author:

Lien Guo-Yuan1,Miyoshi Takemasa2,Kalnay Eugenia3

Affiliation:

1. Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland, and RIKEN Advanced Institute for Computational Science, Kobe, Japan

2. Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland, and RIKEN Advanced Institute for Computational Science, Kobe, and Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

3. Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Abstract

Abstract Current methods of assimilation of precipitation into numerical weather prediction models are able to make the model precipitation become similar to the observed precipitation during the assimilation, but the model forecasts tend to return to their original solution after a few hours. To facilitate the precipitation assimilation, a logarithm transformation has been used in several past studies. Lien et al. proposed instead to assimilate precipitation using the local ensemble transform Kalman filter (LETKF) with a Gaussian transformation technique and succeeded in improving the model forecasts in perfect-model observing system simulation experiments (OSSEs). In this study, the method of Lien et al. is tested within a more realistic configuration: the TRMM Multisatellite Precipitation Analysis (TMPA) data are assimilated into a low-resolution version of the NCEP Global Forecast System (GFS). With guidance from a statistical study comparing the GFS model background precipitation and the TMPA data, some modifications of the assimilation methods proposed in Lien et al. are made, including 1) applying separate Gaussian transformations to model and to observational precipitation based on their own cumulative distribution functions; 2) adopting a quality control criterion based on the correlation between the long-term model and observed precipitation data at the observation location; and 3) proposing a new method to define the transformation of zero precipitation that takes into account the zero precipitation probability in the background ensemble rather than the climatology. With these modifications, the assimilation of the TMPA precipitation data improves both the analysis and 5-day model forecasts when compared with a control experiment assimilating only rawinsonde data.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3