Review article: Towards strongly coupled ensemble data assimilation with additional improvements from machine learning

Author:

Kalnay EugeniaORCID,Sluka Travis,Yoshida Takuma,Da Cheng,Mote SafaORCID

Abstract

Abstract. We assessed different coupled data assimilation strategies with a hierarchy of coupled models, ranging from a simple coupled Lorenz model to the state-of-the-art coupled general circulation model CFSv2 (Climate Forecast System version 2). With the coupled Lorenz model, we assessed the analysis accuracy by strongly coupled ensemble Kalman filter (EnKF) and 4D-Variational (4D-Var) methods with varying assimilation window lengths. The analysis accuracy of the strongly coupled EnKF with a short assimilation window is comparable to that of 4D-Var with a long assimilation window. For 4D-Var, the strongly coupled approach with the coupled model produces more accurate ocean analysis than the Estimating the Circulation and Climate of the Ocean (ECCO)-like approach using the uncoupled ocean model. Experiments with the coupled quasi-geostrophic model conclude that the strongly coupled approach outperforms the weakly coupled and uncoupled approaches for both the full-rank EnKF and 4D-Var, with the strongly coupled EnKF and 4D-Var showing a similar level of accuracy higher than other coupled data assimilation approaches such as outer-loop coupling. A strongly coupled EnKF software framework is developed and applied to the intermediate-complexity coupled model SPEEDY-NEMO and the state-of-the-art operational coupled model CFSv2. Experiments assimilating synthetic or real atmospheric observations into the ocean through strongly coupled EnKF show that the strongly coupled approach improves the analysis of the atmosphere and upper ocean but degrades observation fits in the deep ocean, probably due to the unreliable error correlation estimated by a small ensemble. The correlation-cutoff method is developed to reduce the unreliable error correlations between physically irrelevant model states and observations. Experiments with the coupled Lorenz model demonstrate that strongly coupled EnKF informed by the correlation-cutoff method produces more accurate coupled analyses than the weakly coupled and plain strongly coupled EnKF regardless of the ensemble size. To extend the correlation-cutoff method to operational coupled models, a neural network approach is proposed to systematically acquire the observation localization functions for all pairs between the model state and observation types. The following strongly coupled EnKF experiments with an intermediate-complexity coupled model show promising results with this method.

Funder

NASA Headquarters

Ministry of Earth Sciences

National Oceanic and Atmospheric Administration

Publisher

Copernicus GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3