Author:
Kofidou Maria,Stathopoulos Stavros,Gemitzi Alexandra
Abstract
AbstractThe present work aims at reviewing and identifying gaps in knowledge and future perspectives of satellite-derived precipitation downscaling algorithms. Here, various aspects related to statistical and dynamical downscaling approaches of the precipitation data sets from the Tropical Rainfall Measuring Mission (TRMM) and its successor Intergraded Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG–GPM) mission are reviewed and the existing downscaling methods are categorized and analysed, to highlight the usefulness and applicability of the produced downscaled precipitation data sets. In addition, a critical comparison of the various statistical and dynamical methods for spatial or spatiotemporal downscaling of GPM and TRMM precipitation estimates was conducted, in terms of their advantages and disadvantages, simplicity of application and their suitability at different regional and temporal scales and hydroclimatic conditions. Finally, the adequacy of downscaling remotely sensed precipitation estimates as an effective way to obtain precipitation with sufficient spatial and temporal resolution is discussed and future challenges are highlighted.
Funder
CHIST-ERA
Democritus University of Thrace
Publisher
Springer Science and Business Media LLC
Subject
Earth-Surface Processes,Geology,Pollution,Soil Science,Water Science and Technology,Environmental Chemistry,Global and Planetary Change
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献