Delayed Southern Hemisphere Climate Change Induced by Stratospheric Ozone Recovery, as Projected by the CMIP5 Models

Author:

Barnes Elizabeth A.1,Barnes Nicholas W.2,Polvani Lorenzo M.3

Affiliation:

1. Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

2. Department of Computer Science and Engineering, University of Minnesota, Twin Cities, Minneapolis, Minnesota

3. Lamont-Doherty Earth Observatory, Columbia University, Palisades, and Department of Applied Physics and Applied Math, Columbia University, New York, New York

Abstract

Abstract Stratospheric ozone is expected to recover by the end of this century because of the regulation of ozone-depleting substances by the Montreal Protocol. Targeted modeling studies have suggested that the climate response to ozone recovery will greatly oppose the climate response to rising greenhouse gas (GHG) emissions. However, the extent of this cancellation remains unclear since only a few such studies are available. Here, a much larger set of simulations performed for phase 5 of the Coupled Model Intercomparison Project is analyzed, which includes ozone recovery. It is shown that the closing of the ozone hole will cause a delay in summertime [December–February (DJF)] Southern Hemisphere climate change between now and 2045. Specifically, it is found that the position of the jet stream, the width of the subtropical dry zones, the seasonality of surface temperatures, and sea ice concentrations all exhibit significantly reduced summertime trends over the first half of the twenty-first century as a consequence of ozone recovery. After 2045, forcing from GHG emissions begins to dominate the climate response. Finally, comparing the relative influences of future GHG emissions and historic ozone depletion, it is found that the simulated DJF tropospheric circulation changes between 1965 and 2005 (driven primarily by ozone depletion) are larger than the projected changes in any future scenario over the entire twenty-first century.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference42 articles.

1. Contributions of external forcings to southern annular mode trends;Arblaster;J. Climate,2006

2. Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models;Barnes;J. Climate,2013

3. Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: Historical bias, forcing response, and state dependence;Bracegirdle;J. Geophys. Res.,2013

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3