Increases in the Local Eddy Energetics of the Extratropical Atmosphere over the Last Four Decades

Author:

Battalio J. Michael1ORCID,Lora Juan M.1ORCID

Affiliation:

1. a Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut

Abstract

Abstract Changes in the vertical and meridional temperature gradients of the atmosphere drive competing influences on storm-track activity. We apply local eddy energetics to the ERA5, JRA-55, MERRA-2, and NCEP-2 reanalyses during 1980–2020 to determine the locations, magnitudes, and trends of the energy transfer mechanisms for synoptic-scale eddies. Eddy kinetic energy (EKE) increases more rapidly in the Southern Hemisphere at all altitudes and seasons, with larger increases during austral winter and spring. In the Northern Hemisphere, increases occur within the Atlantic and Pacific storm tracks at pressures below 300 hPa but only during boreal winter and spring and confined within a narrow zonal band; EKE decreases during boreal summer and fall. Most EKE changes correspond with trends in baroclinic energy conversion upstream of storm tracks and appear to align with increases in the growth rate of the most unstable baroclinic mode. Barotropic energy conversion of EKE to the mean flow becomes locally more intense downstream of the storm tracks. Conversion of EKE to long-period eddies plays a minor role averaged over a hemisphere but can be important locally. The primary strengthening pathway for removal of EKE is a combination of surface friction and viscous dissipation. The increased baroclinic conversion in the Southern Hemisphere appears related to upper-level tropical temperature increases. In the Northern Hemisphere, increased baroclinic conversion is enabled by a combination of increased vertical heat fluxes and a region of temperature increases within 30°–60°N. Significance Statement Traveling atmospheric disturbances arrange into storm tracks that determine the weather in the midlatitudes. Storm tracks are evolving in time due to anthropogenic warming; however, the location and strength of temperature changes compete for influence on the storm tracks. A framework to quantify the mechanisms of generation of kinetic energy contained by eddies pinpoints the extent of storm-track evolution. Storm tracks generally strengthen across the planet but have increased the most in the Southern Hemisphere. Strengthening in the Northern Hemisphere is limited to the winter in a narrow latitudinal band, because of warming in the Arctic that reduces the primary instability that drives eddies. The locations of northern warming and storm-track strengthening suggest a role for tropical dynamics.

Publisher

American Meteorological Society

Reference118 articles.

1. Interaction of North Atlantic baroclinic wave packets and the Mediterranean storm track;Ahmadi-Givi, F.,2014

2. A pause in Southern Hemisphere circulation trends due to the Montreal Protocol;Banerjee, A.,2020

3. Comparing the roles of barotropic versus baroclinic feedbacks in the atmosphere’s response to mechanical forcing;Barnes, E. A.,2014

4. Delayed Southern Hemisphere climate change induced by stratospheric ozone recovery, as projected by the CMIP5 models;Barnes, E. A.,2014

5. Transient eddy kinetic energetics on mars in three reanalysis datasets;Battalio, J. M.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3