A Theory for the Seasonal Predictability Barrier: Threshold, Timing, and Intensity

Author:

Liu Zhengyu1,Jin Yishuai2,Rong Xinyao3

Affiliation:

1. Atmospheric Science Program, Department of Geography, The Ohio State University, Columbus, Ohio

2. Department of Atmospheric and Oceanic Sciences, Peking University, Beijing, China

3. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

Abstract

Abstract A theory is developed in a stochastic climate model for understanding the general features of the seasonal predictability barrier (PB), which is characterized by a band of maximum decline in autocorrelation function phase-locked to a particular season. Our theory determines the forcing threshold, timing, and intensity of the seasonal PB as a function of the damping rate and seasonal forcing. A seasonal PB is found to be an intrinsic feature of a stochastic climate system forced by either seasonal growth rate or seasonal noise forcing. A PB is generated when the seasonal forcing, relative to the damping rate, exceeds a modest threshold. Once generated, all the PBs occur in the same calendar month, forming a seasonal PB. The PB season is determined by the decline of the seasonal forcing as well as the delayed response associated with damping. As such, for a realistic weak damping, the PB season is locked close to the minimum SST variance under the seasonal growth-rate forcing, but after the minimum SST variance under the seasonal noise forcing. The intensity of the PB is determined mainly by the amplitude of the seasonal forcing. The theory is able to explain the general features of the seasonal PB of the observed SST variability over the world. In the tropics, a seasonal PB is generated mainly by a strong seasonal growth rate, whereas in the extratropics a seasonal PB is generated mainly by a strong seasonal noise forcing. Our theory provides a general framework for the understanding of the seasonal PB of climate variability.

Funder

National Science Foundation

Natural Science Foundation of China

Ministry of Science and Technology of the People's Republic of China

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference24 articles.

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3