A New Perspective of the Spring Predictability Barrier Based on the Zonal Sea Level Pressure Gradient

Author:

Tan Jing1,Zheng Fei23ORCID,Cao Tingwei24ORCID,Huang Yongyong1,Wang Haiyan1

Affiliation:

1. National Marine Environmental Forecasting Center, Ministry of Natural Resources, Beijing 100081, China

2. International Center for Climate and Environment Science (ICCES), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

3. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China

4. School of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Currently, the “spring predictability barrier” (SPB) is still a controversial problem in many atmosphere–ocean coupled models and has significant impacts on degrading the El Niño–Southern Oscillation (ENSO) predictions across the boreal spring. In this study, unlike previous studies that viewed the SPB issue from the perspective of sea surface temperature (SST), based on the Bjerknes feedback theory and the decadal variations in Walker circulation over the tropical Pacific, a new perspective of the SPB is revealed by the seasonal variations in the observed zonal sea level pressure (SLP) gradient, which can reflect the stability and variability of the atmosphere–ocean interactions during the ENSO’s evolution. More importantly, a significant decadal variation of SPB strength (SPBS) is exhibited in the last 3 decades, from 1991 to 2020, which is strongly controlled by the dominant patterns of sea surface temperature (SST) and Walker circulation, and associated with the background mean atmosphere–ocean states. That is to say, the atmosphere–ocean interaction pattern over the tropical Pacific has undergone decadal variations over the past 3 decades which determine the decadal variations in SPBS. International Research Institute for Climate and Society/Climate Prediction Center (IRI/CPC) multi-models show stronger SPBS during 2001–2010 than during 2011–2020, indicating that the decadal variations in SPBS from statistical analysis also exist in actual model predictions, which further confirms the rationality of this perspective of SPB based on the zonal SLP gradient.

Funder

National Natural Science Foundation of China

Civilian Space Programme of China

National Key R&D Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3