Subseasonal Atmospheric Variability and El Niño Waveguide Warming: Observed Effects of the Madden–Julian Oscillation and Westerly Wind Events*

Author:

Chiodi Andrew M.1,Harrison D. E.1,Vecchi Gabriel A.2

Affiliation:

1. Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, and NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington

2. Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey

Abstract

Abstract Westerly wind events (WWEs) have previously been shown to initiate equatorial Pacific waveguide warming. The relationship between WWEs and Madden–Julian oscillation (MJO) activity, as well as the role of MJO events in initiating waveguide warming, is reconsidered here over the 1986–2010 period. WWEs are identified in observations of near-surface zonal winds using an objective scheme. MJO events are defined using a widely used index, and 64 are identified that occur when the El Niño–Southern Oscillation (ENSO) is in its neutral state. Of these MJO events, 43 have one or more embedded WWEs and 21 do not. The evolution of sea surface temperature anomaly over the equatorial Pacific waveguide following the westerly surface wind phase of the MJO over the western equatorial Pacific is examined. Waveguide warming is found for the MJO with WWE events in similar magnitudes as following the WWEs not embedded in an MJO. There is very little statistically significant waveguide warming following MJO events that do not contain an embedded WWE. The observed SST anomaly changes are well reproduced in an ocean general circulation model forced with the respective composite wind stress anomalies. Further, it is found that the occurrence of an MJO event does not significantly affect the likelihood that a WWE will occur. These results extend and confirm the earlier results of Vecchi with a near doubling of the period of study. It is suggested that understanding the sources and predictability of tropical Pacific westerly wind events remains essential to improving predictions of the onset of El Niño events.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3