MJO-Induced Warm Pool Eastward Extension Prior to the Onset of El Niño: Observations from 1998 to 2019

Author:

Jauregui Yakelyn R.1ORCID,Chen Shuyi S.1ORCID

Affiliation:

1. a Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Abstract

Abstract The Madden–Julian oscillation (MJO) and El Niño–Southern Oscillation (ENSO) are the two most important tropical phenomena that affect global weather and climate on intraseasonal and interannual time scales. Although they occur on different time scales, the MJO-induced sea surface temperature (SST) anomalies over the equatorial Pacific have spatial scales similar to SST anomalies prior to El Niño. This study aims to address the question of whether the MJO plays an important role in the warm pool eastward extension (WPEE) leading up to El Niño. We use over 20 years of satellite observations, including optimum interpolated SST, TRMM-GPM precipitation, and the cross-calibrated multiplatform (CCMP) surface winds from 1998 to 2019, to quantify the spatial structure and duration of the MJO-induced warm SST anomalies over the equatorial Pacific (10°S–10°N, 130°E–180°). The intensity of the MJO is measured by the total rain volume and average surface westerly wind speed throughout its convectively active phase. Results show that 1) 61% of the 98 MJO events induced a WPEE over 1000–3000 km along the equator, which can last beyond 15–30 days after the MJO precipitation ended; 2) the MJO events prior to El Niño are generally stronger and produce significant WPEE far beyond its annual cycle and increasing SST warming in the Niño-3.4 region; 3) consecutive MJO events can produce much stronger WPEE prior to El Niño, which are observed in all El Niño events from 1998 to 2019; and 4) more frequent and stronger MJO-induced WPEE occurs in March–May than other seasons. These results can help better understand the MJO–ENSO interaction and, ultimately, improve the prediction of El Niño onset.

Funder

NASA FINESST

NOAA CVP

Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference77 articles.

1. Surface buoyancy forcing and the mixed layer of the western Pacific warm pool: Observations and 1D model results;Anderson, S. P.,1996

2. Application of satellite surface wind data to ocean wind analysis;Atlas, R.,2008

3. Skill of real-time seasonal ENSO model predictions during 2002–2011: Is our capability increasing?;Barnston, A. G.,2012

4. Intraseasonal air–sea interactions at the onset of El Niño;Bergman, J. W.,2001

5. Barrier layer variability in the western Pacific warm pool from 2000 to 2007;Bosc, C.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3