Seasonally Alternate Roles of the North Pacific Oscillation and the South Pacific Oscillation in Tropical Pacific Zonal Wind and ENSO

Author:

Zhong Wenxiu123,Cai Wenju4,Sullivan Arnold45,Duan Wansuo2,Yang Song13

Affiliation:

1. a School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

2. b State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

3. c Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, Guangdong, China

4. d Center for Southern Hemisphere Oceans Research, CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia

5. e School of Earth, Atmosphere, and Environment, Monash University, Melbourne, Victoria, Australia

Abstract

Abstract The western-central equatorial Pacific (WCEP) zonal wind affects El Niño–Southern Oscillation (ENSO) by involving a series of multiscale air–sea interactions. Its interannual variation contributes the most to ENSO amplitude. Thus, understanding the predictability of the WCEP interannual wind is of great importance for better predictions of ENSO. Here, we show that the North Pacific Oscillation (NPO) and the South Pacific Oscillation (SPO) alternate in fueling this interannual wind from late boreal winter to austral winter in the presence of background trade winds in different hemispheres. During the boreal winter–spring, the NPO registers footprints in the tropics by benefiting from the Pacific meridional mode and modulating the northwestern Pacific intertropical convergence zone (NITCZ). However, as austral winter approaches, the SPO takes over the role of the NPO in maintaining the anomalous NITCZ. Moreover, the interannual wind is further driven to the east in the positive phase of the SPO, by intensified central-eastern equatorial Pacific convection resulting from tropical–extratropical heat flux adjustments. A reconstructed WCEP interannual wind index involving only the NPO and the SPO possesses a long lead time for ENSO prediction of nearly one year. These two extratropical boosters enhance the viability of equatorial Pacific zonal wind anomalies associated with the large growth rate of ENSO, and the one in the winter hemisphere seems to be more efficient in forcing the tropics. Our result further indicates that the NPO benefits a long-lead prediction of the WCEP interannual wind and ENSO, while the SPO is the dominant extratropical predictor of ENSO amplitude. Significance Statement ENSO is closely linked to the interannual variability of equatorial Pacific zonal wind, and ENSO prediction is impeded by the weak predictability of the wind. We have found that the North Pacific Oscillation and the South Pacific Oscillation take turns in affecting the interannual variability of the zonal wind from the late boreal winter to austral winter, and the winter hemisphere extratropical booster is more efficient in modulating tropical convection and the associated surface winds. An estimated zonal wind index constructed by the two extratropical precursors possesses a long lead time for ENSO prediction. Our result provides useful information for better predicting ENSO by further considering winter hemisphere extratropical climate variability.

Funder

The National Natural Science Foundation of China

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference99 articles.

1. The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present);Adler, R. F.,2003

2. The North Pacific pacemaker effect on historical ENSO and its mechanisms;Amaya, D. J.,2019

3. On the joint role of subtropical atmospheric variability and equatorial subsurface heat content anomalies in initiating the onset of ENSO events;Anderson, B. T.,2007

4. Some aspects of the time-correlation problem in regard to tests of significance;Bartlett, M. S.,1935

5. Intraseasonal air–sea interactions at the onset of El Niño;Bergman, J. W.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3