Affiliation:
1. Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, and Goddard Earth Sciences Technology and Research, Universities Space Research Association, Columbia, Maryland
Abstract
Abstract
The quality of MERRA-2 surface wind fields was assessed by comparing them with 10 years of measurements from a wide range of surface wind observing platforms. This assessment includes a comparison of MERRA-2 global surface wind fields with the ones from its predecessor, MERRA, to assess if GMAO’s latest reanalyses improved the representation of the global surface winds. At the same time, surface wind fields from other modern reanalyses—NCEP-CFSR, ERA-Interim, and JRA-55—were also included in the comparisons to evaluate MERRA-2 global surface wind fields in the context of its contemporary reanalyses. Results show that MERRA-2, CFSR, ERA-Interim, and JRA-55 show similar error metrics while MERRA consistently shows the highest errors. Thus, when compared with wind observations, the accuracy of MERRA-2 surface wind fields represents a clear improvement over its predecessor MERRA and is in line with the other contemporary reanalyses in terms of the representation of global near-surface wind fields. All reanalyses showed a tendency to underestimate ocean surface winds (particularly in the tropics) and, oppositely, to overestimate inland surface winds (except JRA-55, which showed a global tendency to underestimate the wind speeds); to represent the wind direction rotated clockwise in the Northern Hemisphere (positive bias) and anticlockwise in the Southern Hemisphere (negative bias), with the exception of JRA-55; and to show higher errors near the poles and in the ITCZ, particularly in the equatorial western coasts of Central America and Africa. However, MERRA-2 showed substantially lower wind errors in the poles when compared with the other reanalyses.
Publisher
American Meteorological Society
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献