Optimizing Renewable Energy Systems for Water Security: A Comparative Study of Reanalysis Models

Author:

Vargas-Brochero José1ORCID,Hurtado-Castillo Sebastián1,Altamiranda Jesús2,de Menezes Filho Frederico Carlos M.3ORCID,Beluco Alexandre4ORCID,Canales Fausto A.1ORCID

Affiliation:

1. Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, Barranquilla 080002, Colombia

2. Department of Civil Engineering, Faculty of Engineering, Universidad de Sucre, Carrera 27 #5A-04, Sincelejo 700001, Colombia

3. Institute of Exact and Technological Sciences, Federal University of Viçosa, Campus of Rio Paranaíba, Rodovia BR 230 KM 7, Rio Paranaíba 38810-000, Brazil

4. Instituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande do Sul, Av Bento Gonçalves 9500, Porto Alegre 91540-000, Brazil

Abstract

The current global scenario of unequal access to water and electricity motivates the search for solutions based on available resources, such as renewable energies and desalination. Additionally, adequate sizing of renewables requires extensive and reliable time series, which are usually unavailable. Reanalysis models are an option to consider, but only after evaluating their local accuracy, generally through performance metrics. This study evaluated the performance of the solar radiation, temperature, and wind speed products from MERRA2 and ERA5-Land in comparison to ground data, as well as their influence on the optimal initial configuration of a renewable energy system for desalination in La Guajira, Colombia. HOMER Pro was the software tool employed to establish the best arrangements for the resulting renewable power systems, and the study included a sensitivity analysis considering different annual capacity shortages, operating hours, and energy needs for desalting. ERA5-Land performed better than MERRA2 in matching the time series from the local station. The relative error of the cost of electricity of systems dimensioned from reanalysis was less than 3% compared to systems from ground measurements, with a renewable fraction above 98%. For the study area, ERA5-Land reanalysis represents a reliable alternative to address the scarcity of solar resource records, but both reanalyses failed to reproduce the wind speed regime.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3